丙烯酰胺

更新时间:2022-07-06

丙烯胺是生产聚丙烯酰胺的原料。聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温(\u003e120℃)烹调下容易产生丙烯酰胺。丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。2002年4月瑞典国家食品管理局和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品中检出丙烯酰胺,而且含量超过饮水中允许最大限量的500多倍。之后多国家也相继报道了类似结果。

基本信息

中文名丙烯酰胺
外文名Acrylamide
别名2-丙烯酰胺
化学式C3H5NO
熔点82 至 86 ℃
密度1.322 g/cm³
水溶性可溶
沸点125 ℃
闪点138 ℃
外观白色无味片状晶体
摩尔质量71.08 g·mol−1
CAS号79-06-1
EINECS登录号201-173-7
应用光敏树脂板,增粘剂,浸润剂,土壤改良剂,絮凝剂,涂料等
安全性描述S53;S45;S24;S36/37/39;S26;S36/37
危险性符号T
危险性描述R43;R45;R46;R48/20/21/22
UN危险货物3426
溶解性溶于水、乙醇,微溶于苯、甲苯
分子量71.08

简介

理化性质

丙烯酰胺(acrylamide,AM),分子式C3H5NO,结构简式为CH2=CHCONH2,又称2-丙烯酰胺。从苯中析出者为单斜晶系叶片状无色透明晶体,分子量为71.08,密度为1.322g/cm,熔点82-86℃,沸点为125℃。

30℃时的溶解度:215.5g/100g水、155g/100g甲醇、63.1g/100g丙酮、12.6g/100g乙酸乙酯、2.66g/100g氯仿、0.346g/100g苯。

含有双键及酰胺基,具有双键的化学通性:在紫外线照射下或在熔点温度时,很容易聚合;另外,双键可以进行加成反应,在碱存在下与羟基化合物加成,生成醚;与伯胺加成,可以生成一元加成物或二元加成物,与仲胺加成,只能生成一元加成物,与叔胺加成,生成季铵盐;与活化后的酮加成,加成物可立即环化而生成内酰胺。也可与亚硫酸钠硫酸氢钠氯化氢溴化氢等无机化合物加成;本品也可共聚,如与其他丙烯酸酯苯乙烯、卤代乙烯等共聚;双键也可用硼氢化物、硼化镍、羰基铑等催化剂还原,生成丙酰胺;用四氧化锇进行催化氧化,可以生成二醇。本品的酰胺基具有脂肪族酰胺的化学通性:与硫酸反应生成盐;在碱性催化剂存在下,水解生成丙烯酸根离子;在酸性催化剂存在下,水解生成丙烯酸;在脱水剂存在下,脱水生成丙烯腈;与甲醛反应,生成N-羟甲基丙烯酰胺

安全性

本品剧毒,吸入其蒸气或经皮吸收,能引起中毒,产生神经中枢障碍及肝损伤,对皮肤也有腐蚀,对眼睛有刺激性。大鼠、家兔经口LD50:150~180mg/kg。工作场所最高允许最高浓度0.3mg/m。

1994年国际癌症研究机构(International Agency for Research on Cancer,IARC)将AM列为2A类致癌物,即“人类可能致癌物”。2002年4月,瑞典科学家在油炸马铃薯中首次发现AM的存在。随后英国等一些国家相关机构对Am在食品中的含量进行了测定,并证实瑞典科学家的发现。因 AM的毒性和潜在的致癌作用而迅速在世界范围引起研究热潮。2003年美国食品药物管理局(Food and Drug Administration,FDA)公布的数据显示,常见食品中AM质量浓度约在0~2510μg/kg之间,尤其在一些含高碳水化合物食物(如马铃薯、饼干、咖啡等)经高温(\u003e120℃)处理,如烹饪、煎炸、烘烤,AM含量最高可达2300μg/kg,远超过世界卫生组织规定的日常饮用水中AM的限值0.5μg/L,因此,环境和食物中的AM暴露严重影响着人类的健康。

主要用途

本品为丙烯酰胺系中最重要及最简单的一种,用途十分广泛,用作有机合成的原料及高分子材料的原料。其聚合物可溶于水,因而被用来生产水处理时的絮凝剂,尤其对水中的蛋白质、淀粉的絮凝有良好的效果。除有絮凝性外,还有增稠性、耐剪切性、降阻性、分散性等优良性能。

用作土壤改良剂时,可增加土壤的水渗透性和保湿性;用作纸张填料辅剂,可增加纸张强度,以代替淀粉、水溶性氨树脂;用作化学灌浆剂,用于土木工程的隧道开掘、油井钻探、矿井和水坝等工程的堵漏;用作纤维改性剂,可改善合成纤维的物性;用作防腐剂,可用于地下构件的防腐;还可用于食品工业的添加剂、颜料的分散剂、印染糊剂。与酚醛树脂溶液配合,可制成玻璃纤维的粘合剂,与橡胶一起可制成压敏性粘合胶等。与乙酸乙烯、苯乙烯、氯乙烯、丙烯腈等单体聚合,可制备许多合成材料。本品还可用作医药、农药、染料、涂料的原料。

性质

丙烯酰胺是一种不饱和酰胺,能溶于水、乙醇乙醚、丙酮、氯仿,不溶于苯及庚烷,在酸碱环境中可水解成丙烯酸。

丙烯酰胺在室温下很稳定,但当处于熔点或以上温度、在氧化条件下以及在紫外线的作用下很容易发生聚合反应,生成聚丙烯酰胺。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。但熔融时则骤然聚合。易燃,受高热分解放出腐蚀性气体。毒性很大,LD50 126mg/kg。对中枢神经系统有危害,且可能致癌,对眼睛和皮肤亦有强烈的刺激作用。

丙烯酰胺是一种用来制造聚丙烯酰胺的工业化学物。近年研究发现,经高温处理或烹煮后,食物内的游离天门冬酰胺与还原糖产生反应,形成丙烯酰胺。这种化学物是基因致癌物质,被认为对实验动物可产生神经系统毒性作用,并且会影响生殖和发育。然而,流行病学研究未能提供一致的证据,證明人体从膳食中摄入丙烯酰胺的水准与癌症发病率相关。

代谢与膳食

AM是一个具有亲电基团的有机小分子,水溶性极强,可通过皮肤、黏膜、呼吸道、胃肠道等进入体内。食物中的AM通过肠道完整的吸收,而环境中暴露的AM约25%被皮肤吸收。吸收后的AM通过血液循环系统广泛分布于体内各个组织,并在此过程中对肌体造成损害。

代谢与吸收

研究表明,在摄入低剂量AM的情况下,约50%会转化成GA,而高剂量的AM则大部分与GSH反应,约13%转化成GA。代谢生成的AAMA、GAMA、异GAMA和1,2-二羟基丙酰胺均随尿液排出,而在尿液中检出的时间顺序及含量不同,如:AM摄入2h后即可检测出本身和AAMA;由于AM向GA转化过程中需要时间,所以4h后才检出GAMA 和异GAMA。

AAMA和GAMA在人体内通常48h后完全排出体外,总尿液中AAMA占总AM的51%,是AM的主要代谢产物;GAMA和异GAMA占总AM的5%,是AM的次要代谢产物,其中异GAMA的含量远小于GAMA。生成的GAMA等在排出前的代谢过程是否对肌体造成毒害未见报道。

日膳食暴露评估

经口摄入被认为人体吸收AM最迅速、完整及主要的途径,一些研究根据不同地区食品中AM的含量来评估该地区普通人群AM的摄入量。

2011年FAO/WHO食品添加剂联合专家委员会(Joint FAO/WHO Expert Committee on Food Additives,JECFA)对除非洲以外世界范围内8个代表国家中丙烯酰胺膳食摄入量进行评估,结果表明普通人群的日摄入量平均约为1μg/(kg bw·d),最高摄入量约为4μg/(kg bw·d)。由于不同国家烹饪、饮食习惯的不同,各国的摄入量有所差异。英国最新公布的日摄入量为0.61μg/(kg bw·d),法国为0.43μg/(kg bw·d),而中国在最新膳食研究中得出的摄入量为0.319 μg/(kg bw·d),仍显著低于世界的平均水平,这与我国传统的食品加工工艺(低于100℃的蒸煮加工)和近年来饮食习惯略有改变有很大关系。

有学者基于生理学的毒素代谢动力学模式和非线性剂量反应法确定丙烯酰胺的神经毒性日摄入边际剂量为40μg/(kg bw·d),丙烯酰胺日致癌边际剂量为2.6 μg/(kg bw·d)。

毒性机制

丙烯酰胺的毒性主要包括神经毒性、生殖毒性、遗传毒性、免疫毒性及潜在致癌性,在人体中得到证实的是神经毒性。

神经毒性

许多研究表明丙烯酰胺具有显著的神经毒性,在人类的职业暴露以及动物实验中均有明确证据:我国自20世纪70年代开始报道AM的中毒病例,尤其在职业暴露上屡见不鲜。研究发现AM中毒者主要的症状体征为皮肤脱皮红斑、四肢麻木、手足多汗、体重减轻及远端触痛觉减退、深反射减退等神经功能受损的症状;而猫、大鼠、小鼠、豚鼠、兔和猴等实验动物暴露AM后则会表现出共济失调、后肢足呈八字、骨骼肌无力,并最终导致运动障碍。近年研究表明,AM诱导神经毒性的可能机制如下:

氧化损伤与神经细胞凋亡调控

研究表明,活性氧族(reactive oxygen species,ROS)对细胞膜脂质、蛋白质和DNA不断攻击并造成相应靶分子累积氧化变性或损伤,是造成细胞代谢紊乱和功能异常的重要生理基础。当体内自由基和活性氧的产生与消除间不平衡时会产生氧化应激,从而引发许多疾病。中枢神经系统(central nervous system, CNS)是机体氧代谢较活跃的部位,其抗氧化酶活性低于其他组织,这使之易成为氧化损伤的主要靶器官。AM可能会通过诱导和影响氧化应激来引起神经损伤。同时,AM刺激也会激活细胞中的免疫通路并对产生的氧化应激进行防御。

另外,共轭α-β不饱和羰基衍生物,如丙烯醛(acrolein)和4-羟基-2-壬烯醛(4-hydroxy-2-nonenal)等一类属于II型烯烃,研究表明这种II型烯烃可能与内源性产生的不饱和醛协同作用,从而加大细胞损伤,加速了在涉及氧化应激的急性神经损伤(如脊髓创伤)和某些慢性神经疾病如阿尔兹海默症(Alzheimer disease,AD)、帕金森综合征(Parkinson’s syndrome,PD)等的过程。而AM在结构上也属于共轭α-β不饱和羰基衍生物。氧化应激可能是AM造成神经毒性,从而引发神经性疾病的一个主要机制。

血脑屏障功能损害

血脑脊液屏障(blood-cerebrospinal fluid barrier)主要由脉络丛(choroidplexus)上皮细胞之间的紧密连接构成,负责血液和脑脊液之间的物质转运。完整的血脑脊液屏障是保证中枢神经系统内环境稳定的重要条件。有学者发现鼠腹腔注射AM后脑脊液中甲状腺水平下降,瘦素(leptin,LP)转运水平被抑制,LP水平降低。由于瘦素具有促进大脑生长发育,降低促凋亡因子水平的作用,因此AM诱导的神经细胞凋亡也有可能是因血脑屏障中LP水平的降低引起的。另外,AM还会造成紧密连接相关蛋白(zonula occludens-1,ZO-1)表达减少,屏障通透性增加,从而容易引起血清蛋白或其它神经毒物即可进入脑组织中,使神经系统的代谢及功能发生紊乱。

能量代谢障碍

有学者采用酶分析法发现AM染毒后大鼠脑组织匀浆中ATP合成酶活力下降,ATP水平明显降低,ADP和AMP增加,肌酸激酶(Creatine Kinase,CK)活力明显受到抑制,由于CK是轴突运输上的一个重要组成,因此推测能量代谢障碍可能是AM产生神经元损伤、神经病变的生化基础。

神经递质的改变与抑制

AM也可能通过改变神经递质水平和功能导致神经毒性,如阻碍神经末梢的膜融合过程。 N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(N-ethylmaleimide sensitive factor,NSF)是参与神经递质释放的一种ATP酶

研究表明NSF可能是A的靶位点,在神经递质传递过程中AM与NSF蛋白264位甲硫氨酸位点(NSF Cys264)形成加合物来抑制突触小体对神经递质的释放,阻碍神经末梢膜融合,最终导致神经末梢变性;同时,AM还会导致纹状体多巴胺的含量显著降低,突触囊泡多巴胺的摄取能力减弱,导致神经递质的存储障碍,进而也会引发递质的释放障碍。

在所抑制神经递质中,有研究指出:AM会导致大鼠大脑皮层和小脑内兴奋性神经递质谷氨酸(glutamic acid,Glu)降低,而抑制性神经递质γ-氨基丁酸(γ-aminobutyric acid,GABA)未发生变化。Glu是脑区最重要且常见的兴奋性神经递质,在学习记忆、躯体协调运动等方面发挥重要作用,因此大脑皮层和小脑兴奋性神经递质如Glu的降低可能是AM诱导神经毒性的机制之一。

生殖毒性

许多研究表明AM进入机体后会影响动物的生育能力。研究发现对雄性成年大鼠和新生大鼠进行高剂量AM处理,会导致大鼠生长迟缓,进食量和生殖器官指数降低,附睾中精子数目减少并发生形态异常,同时睾丸组织也发生病变。

AM诱导的生殖毒性机制一方面是由于影响生殖器官中氧化应激状态,如影响可以清除组织中ROS的重要抗氧化酶,导致体内积累过多的ROS,损害细胞功能。同时,AM结合蛋白生成的加合物也会抑制细胞增殖。

另外,AM还会引起生殖细胞的基因损害。有学者发现长期暴露于低剂量AM,虽没有显著影响睾丸的质量和形态,但会造成雄性小鼠早期生殖细胞DNA损伤且具有剂量依赖性,然而这种基因性的损害可能会传递到下一代而引起遗传毒性。

免疫毒性

丙烯酰胺也会损伤胸腺和脾脏等免疫器官,从而抑制细胞免疫功能。研究发现在雌性Blb/c小鼠中AM会导致大鼠的体重、脾脏、胸腺及肠系膜淋巴结质量显著下降,淋巴细胞数减少,脾细胞增殖受到抑制,且淋巴结、胸腺、脾脏等组织病理学也发生改变。有学者在美国人群中观察到AM和GA会诱导如哮喘、发烧、打喷嚏、哮喘和湿疹等过敏类似反应,猜测这也可能与AM导致的免疫缺陷相关。AM造成免疫毒性可能是因为其破坏了T细胞膜表面的细胞因子——白细胞介素2(interleukin-2,IL-2)受体,使得IL-2活性降低,从而影响免疫应答过程细胞因子之间的相互作用,使免疫系统的调节受到破坏,因此导致机体出现免疫功能障碍。

致癌性

AM被国际癌症机构列为2A类致癌物。虽然学者们从多角度探索其致癌性,但被公认的资料绝大多数来源于啮齿类动物模型。有学者用低剂量AM处理大鼠2年后,发现雄性大鼠睾丸间皮瘤、肾上腺皮瘤、星形细胞瘤以及口腔肿瘤都有不同程度的增加,雌性大鼠的乳腺纤维瘤和甲状腺瘤增多,证实了AM与肿瘤的相关性。

在流行病学上也有证据表明AM与某些癌症的患病风险相关。一些研究指出饮食中AM的摄入与子宫内膜癌、卵巢癌、乳腺癌等呈正向关联,然而,也有研究表明AM摄入与卵巢癌无明显相关性。AM的致癌性有待于进一步的探究和验证。

其它毒性

丙烯酰胺还会对肝、肾、肺、膀胱、消化道等造成损害,主要表现在能显著抑制组织中抗氧化物酶SOD、GSH和GST的水平,增加脂质代谢产物MDA积累,造成组织损伤等。尤其肝脏作为线粒体和抗氧化物酶富集地,AM代谢的主要场所,其受氧化损伤、形态损伤和功能损伤作用最为明显;此外,AM通过胃肠道屏障时会使小肠的吸收和消化功能降低,肌体消瘦。也有研究表明消瘦的症状可能与AM和体内的肠道微生物作用有关。

毒性机制干预

目前,基于AM毒性机制,采用生物活性提取物抑制AM毒性机制的关键步骤将成为干预AM毒性的主要途径。

减少生物体内的氧化应激

AM造成的神经损伤、生殖损伤、肝损伤等部分是通过AM改变体内氧化应激状态使ROS等累积造成的。通过生物活性物质来提高GST等活性,可产生更多的GSH清除体内ROS,并促进AM的代谢。研究发现在大鼠的AM饮食中添加香叶醇和姜黄素,可导致其线粒体中一些氧化指标如丙二醛、NO等下降,并且AM诱导的坐骨神经、大脑皮层中的GSH水平降低得到改善;芦丁和维E的共同施用降低了大脑组织中的丙二醛水平,并显著改善大鼠AM剂量依赖性的步态异常和体重下降。

抑制AM诱导的细胞凋亡

AM诱导的线粒体依赖性细胞凋亡可能会激活炎症或癌症通路,对肌体造成严重损伤。有学者将鱼油添加至AM饮食,可显著降低Bax蛋白及Bcl2相关死亡启动子的水平,从而调控诱导细胞凋亡的表达。

减少AM向GA转化

GA比AM更容易攻击DNA和蛋白,且具有更强的致癌性。GA在细胞色素P450酶作用下生成,抑制酶的活性在某种程度上可降低GA的毒性。有学者利用蓝莓花色苷提取物(blueberry anthocyanins extract,BAE)对丙烯酰胺毒性进行干预,在改善GST、SOD活性的同时,还显著抑制CYP2E1蛋白的表达,减少GA的生成。

抑制方法

国内外对如何抑制食品中丙烯酰胺的生成做过大量研究,主要方向集中在食品的加工工艺以及抑制剂的选择上。

原料的预处理

试验得出,制作油炸薯条时,原料马铃薯应避免低于10℃保存。在温度较低时,马铃薯中的部分淀粉会转化成还原糖,经油炸加工后,丙烯酰胺的含量明显上升。将马铃薯切片后在60℃温水中浸泡15min再进行油炸加工,经检测,用此法制成的油炸薯条中的丙烯酰胺含量降至40~70μg/kg,比原来降低5~10倍,同时还保留了原有的烹调效果。研究发现:用70℃热水浸泡马铃薯40min后,油炸产品中丙烯酰胺的含量降低了91%;用50℃热水浸泡马铃薯70min后,在190℃高温下进行油炸加工,丙烯酰胺含量仅为28μg/kg;用柠檬酸溶液浸泡马铃薯后,油炸成品中的丙烯酰胺可以降低70%左右。

温度与时间

丙烯酰胺主要存在于煎炸、焙烤等经过高温加工的食品中。研究指出,油炸温度和油炸时间是影响油炸薯条中丙烯酰胺含量的主要因素。随着油炸温度的升高和油炸时间的延长,产品中丙烯酰胺含量明显上升。加工过程中,将温度控制在120℃以下,丙烯酰胺的生成量较少;而当油温从120℃升高到180℃时,产品中丙烯酰胺含量增加了58倍。

当焙炒温度在120~180℃时,降低加工温度和减少加热时间可以减少咖啡中丙烯酰胺的生成量;当焙炒温度在200℃以上时,随着温度和时间的增加,丙烯酰胺的最终生成量会相应减少。因此,在食品加工过程中,温度和时间对丙烯酰胺的生成具有较为显著的影响。

天冬酰胺酶

天冬酰胺酶可以使丙烯酰胺的前体物质天冬酰胺水解,生成天冬氨酸和氨,从而在一定程度上抑制丙烯酰胺的生成。有学者利用天冬酰胺酶对马铃薯样品进行前处理,发现样品中天冬酰胺含量下降明显,降幅可达88%。通过把马铃薯条和马铃薯片在天冬酰胺酶溶液中浸泡处理后发现,在相同的油炸条件下,马铃薯条和马铃薯片中丙烯酰胺的含量分别下降了30%和15%。

盐类

不同盐类对食品中丙烯酰胺的生成具有不同影响,目前人们研究较多的盐类为NaClMgCl2 和CaCl2。有学者发现,薯片在热烫处理前浸泡于1%的食盐溶液中,可以使成品中丙烯酰胺的含量降低62%。另有研究通过构建不同的模型发现,NaCl在天冬酰胺–葡萄糖模型和天冬酰胺–果糖模型中对丙烯酰胺的生成均有一定的抑制作用。然而,在所构建的模型中,并未发现NaCl对丙烯酰胺的减少有明显影响。因此,NaCl对于丙烯酰胺的抑制作用有待于进一步的研究。

研究发现,在煎炸之前把马铃薯浸入CaCl2溶液中,成品中丙烯酰胺的合成量可减少95%,且处理方式对油炸薯条的色泽与口感没有明显的影响。当CaCl2质量浓度较低时,对丙烯酰胺具有抑制作用;而当CaCl2浓度较高时,反而对丙烯酰胺的生成有促进作用。

MgCl2的抑制作用和CaCl2类似,MgCl2可抑制饼干中丙烯酰胺的形成,但是效果不如CaCl2。

氨基酸和蛋白质

有学者通过构建化学模型发现,半胱氨酸赖氨酸精氨酸对食品中丙烯酰胺的产生具有较好的抑制作用,对丙烯酰胺的抑制率最高可达90%。

向马铃薯样品中加入游离甘氨酸、半胱氨酸、谷氨酸和高蛋白物质后发现,成品中丙烯酰胺的含量显著降低。有学者在油炸薯条配方中加入2%的鹰嘴豆蛋白,发现产品中的丙烯酰胺含量有所下降。从反应机理来说,游离氨基酸和天冬酰胺的竞争导致美拉德反应受阻以及蛋白质和丙烯酰胺的共价结合可能是产品中丙烯酰胺含量下降的主要原因。

黄酮类物质

黄酮类物质具有多种生物活性。有学者发现,从番茄皮中提取的柚皮素可以显著降低食品中丙烯酰胺的含量,并且抑制效果随着柚皮素用量的增加而提高。通过建立甘氨酸–葡萄糖模型发现,来自橄榄、橘子等植物的黄酮类提取物对丙烯酰胺的抑制率可达30%~85%。

黄酮添加量与对丙烯酰胺的抑制呈非线性关系;定量结构–活性关系(QSAR)试验证明了生物黄酮芳环羟基的数目和位置、糖基取代的方式(碳苷或氧苷)、B环连接的形式(2或3位)以及黄酮环的拓扑结构对丙烯酰胺的抑制活性具有重要影响。

环境暴露

暴露来源

丙烯酰胺为人造化合物,在自然环境中并不存在。由于丙烯酰胺广泛用于多种行业,其生产过程和聚丙烯酰胺等聚合物生产过程会有残余的丙烯酰胺单体通过工业废水、废渣进入水体、土壤和大气等环境介质。丙烯酰胺已在各种工业污水中检测到。美国对工厂周边环境的监测显示,某丙烯酰胺生产工厂排污口下游河流中含有丙烯酰胺,浓度为1.5mg·L;6个生产丙烯酰胺或聚丙烯酰胺的工厂附近土壤或沉积物中检测到丙烯酰胺浓度\u003e0.02mg·L,附近空气中检测到的丙烯酰胺平均水平\u003e0.2μg·m,以蒸气或微粒形式存在。聚丙烯酰胺或其他聚合物产品中残留的丙烯酰胺单体会在使用过程中释放入环境。在利用聚丙烯酰胺处理饮用水的地区,河水和自来水中可以检测到丙烯酰胺。另外,吸烟的过程中也会产生丙烯酰胺;许多食物高温烹制过程中也会产生丙烯酰胺,尤其是油炸、烘烤类高淀粉食物,其形成机制为高温下氨基酸(主要是天冬酰胺)和羰基化合物(主要是还原糖如葡萄糖)的美拉德反应( Maillard reaction)。

丙烯酰胺饮用水安全阈值在0.01~1μg·L,职业平均暴露限值为0.03mg·mskin,最大暴露限值为0.2~0.3mg·mskin。各国卫生部门对聚丙烯酰胺工业产品中丙烯酰胺残留量限值一般规定在0.5%~0.05%,用于工业和城市污水的净化处理时,一般允许丙烯酰胺残留量在0.2%以下,用于直接饮用水处理时,丙烯酰胺残留量需在0.05%以下。

美国国家职业安全与健康委员会(NIOSH)认为丙烯酰胺是潜在致癌物,建议对其控制应为技术可以达到的最低浓度。国外环境中检测到的浓度相对偏高,尤其是生产或使用丙烯酰胺及相关产品的行业工业废水中丙烯酰胺浓度。中国环境内丙烯酰胺污染也不容忽视,而我国目前缺乏对丙烯酰胺的常规监测数据,也没有相关行业丙烯酰胺污水排放标准。

暴露途径

人类和动物丙烯酰胺暴露途径主要包括皮肤接触、摄食或呼吸。皮肤接触途径主要针对职业接触丙烯酰胺的人群,其中包括丙烯酰胺生产、工业加工(塑料、涂料、纺织、造纸等)中暴露的工人及实验中接触丙烯酰胺(进行SDS-聚丙烯酰胺凝胶电泳)的科研人员。另外,化妆品、包装材料和涂料中也会有残余的丙烯酰胺,人类在日常使用过程中会直接皮肤接触暴露。含丙烯酰胺的工业废水排入水体后,水生生物会经过直接接触或摄食暴露。人体摄食暴露主要源于饮用水和食物摄入。聚丙烯酰胺作为絮凝剂用于饮用水净化和市政工业废水处理,也作为胶结剂用于饮用水水库或水井建造,其中含有的丙烯酰胺单体可能会释放进入水体导致饮用水污染

许多高温烹制的食物中也含有丙烯酰胺,瑞典国家粮食管理局和斯德哥尔摩大学的科学家首次公布油炸、高温烘烤的淀粉类食品中丙烯酰胺的含量比世界卫生组织(WHO)规定的饮水中丙烯酰胺含量(1μg·L)高500倍以上。通过工业烟尘进入大气的丙烯酰胺可经呼吸作用和皮肤接触作用进入人体。人类吸烟产生的烟雾中含有丙烯酰胺会经呼吸作用进入体内,对于无职业暴露人群吸烟烟雾是丙烯酰胺暴露的一个重要非食物来源。普通人群的丙烯酰胺日摄取量估计为0.3~0.8μg·kg体重。

迁移行为

依据丙烯酰胺的结构采用结构预测方法估计其不易被土壤吸附,在土壤中具有高度迁移性,易从土壤中浸出污染地下水,沙壤土中迁移性高于粘土。

相应地,进入水体的丙烯酰胺不易被吸附于悬浮颗粒物或沉积物。丙烯酰胺的亨利常数很低,其从水体表面和潮湿土壤挥发的可能性较小。鉴于其低蒸气压,丙烯酰胺也很难从干燥土壤中挥发。丙烯酰胺会以蒸气态或颗粒态进入大气,但气态丙烯酰胺进入大气后易被吸附于颗粒物上,只有极少的丙烯酰胺会以气态形式存在于空气中。空气中颗粒态的丙烯酰胺可通过沉降过程或雨水冲刷进入土壤和水环境,而土壤中的丙烯酰胺又易于渗滤入水环境,因此绝大部分进入环境的丙烯酰胺最终将进入水体。

转化行为

生物降解是丙烯酰胺土壤降解的主要途径,主要机制之一是酶催化水解。土壤有氧条件下,丙烯酰胺经微生物作用可水解产生铵离子,铵离子经硝化作用被氧化为亚硝酸根离子和硝酸根离子。有氧土壤中,丙烯酰胺经14天可被降解74%~94%;而浸水的缺氧土壤中丙烯酰胺经14天可被降解64%~89%,可见有氧条件更有利于丙烯酰胺生物降解。依据土壤不同类型及理化性质,估计土壤中丙烯酰胺半衰期在21~36h。

水体消除丙烯酰胺的主要途径也是生物降解,水中可以分离出多种利用丙烯酰胺作为唯一碳源或氮源的微生物,如节杆菌、诺卡氏菌、球形芽孢杆菌、假单胞杆菌和红球菌。高的微生物活性尤其是表面微生物活性可以促进丙烯酰胺降解。

大气中气态的丙烯酰胺通过与光化学作用产生的羟基自由基(·OH)反应降解,羟基自由基浓度为5×10个·OH每立方厘米时该反应的半衰期为1.4天,还可与臭氧反应,臭氧浓度为7×10个O3每立方厘米时,半衰期为6.5天。丙烯酰胺对直接光解作用并不敏感,因为其不吸收波长\u003e290nm的太阳光。

由于丙烯酰胺在水中具有高可溶性且半衰期较短,具有生物富集性的可能性较小。有学者对幼鳟72h静态实验研究表明,其身体和内脏对丙烯酰胺的生物浓缩因子(BCF)分别为0.86和1.12,整体BCF为1,丙烯酰胺没有明显的生物富集性。

研究历史

19世纪末,科学家用丙烯酰氯与氨首次合成了丙烯酰胺。

1954年,美国氰氨公司采用丙烯腈硫酸水解工艺进行工业生产。

1972年,日本三井东压化学公司首先建立了骨架铜催化丙烯腈,水合制丙烯酰胺的工业装置,此后各国相继开发了不同类型的催化剂,采用此项工艺进行工业生产。

20世纪80年代,日本日东化学工业公司实现了用生物催化剂由丙烯腈制丙烯酰胺的工业生产。

2002年4月,瑞典国家食品管理局和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条炸土豆片、谷物、面包等中检出丙烯酰胺;之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。由于丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性,因此食品中丙烯酰胺的污染引起了国际社会和各国政府的高度关注。

2002年6月25日,世界卫生组织和联合国粮农组织(FAO)联合紧急召开了食品中丙烯酰胺污染专家咨询会议,对食品中丙烯酰胺的食用安全性进行了探讨。

2005年2月,联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)第64次会议根据相关资料,对食品中的丙烯酰胺进行了系统的危险性评估。

制备方法

硫酸水合法

丙烯腈和水在硫酸存在条件下水解成丙烯酰胺的硫酸盐,然后用液氨中和生成丙烯酰胺和硫酸铵

CH2=CHCN+H2O+H2SO4─→CH2=CHCONH2·H2SO4

CH2=CHCONH2·H2SO4+2NH3─→CH2=CHCONH2+(NH4)2 SO4

此法的缺点是副产大量价值低廉、肥效不高的硫酸铵,又存在严重的硫酸腐蚀和污染等问题。

催化水合法

丙烯腈与水在铜系催化剂的作用下,于70~120℃、0.4MPa压力下进行液相水合反应

CH2=CHCN+H2O─→CH2=CHCONH2反应后滤去催化剂,回收未反应的丙烯腈,丙烯酰胺水溶液经浓缩、冷却得丙烯酰胺结晶。

该法工艺流程简单,丙烯酰胺的选择性和收率可达98%以上。

生化法

生化法制取丙烯酰胺。将丙烯腈、原料水和生物催化剂调配成水合溶液.催化反应后分离出废催化剂就可得到丙烯酰胺产品。

该方法的特点是:在常温常压下反应,设备简单,操作安全;酶的特异性能使选择性极高,无副反应。采用J-1菌种时,反应温度为5~15℃,pH为7~8,反应区丙烯腈质量分数为1%~2%,丙烯腈转化率为99.99%,丙烯酰胺选择性为99.98%,反应器出口丙烯酰胺质量分数接近50%;失活的酶催化剂排出系统外的量小于产品的0.1% ;无需离子交换处理,使分离精制操作大为简化;产品浓度高,无需提浓操作;整个过程操作简便,利于小规模生产。

用途

丙烯酰胺主要用来制取能溶于水的聚合物,而这种聚丙烯酰胺可作为添加剂用以提高石油的回收率;用作絮凝剂、增厚剂和造纸助剂

少量丙烯酰胺被用来将亲水中心引入亲油的聚合物中以改善粘度,提高软化点和提高树脂的抗溶剂性,并且可以为染料的受色性引入一个中心。

丙烯酰胺还常常被用作感光聚合物的一个组分。

此外丙烯酰胺还可以用在生产医药、染料、涂料的中间体。

危害

丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可通过皮肤黏膜、呼吸道和消化道等多种途径被人体吸收,其中经消化道吸收最快,在体内各组织广泛分布,包括母乳。丙烯酰胺一旦进入人体,将迅速被消化器官吸收,几小时后有一半左右通过尿液排出体外,而剩余的则在体内蓄积,主要影响神经系统,但急性中毒十分罕见。

密切大量接触可出现亚急性中毒,表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。

早在1994年,国际癌症研究机构就将丙烯酰胺列为人类可能致癌源。动物实验证明,丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变染色体异常,可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺肿瘤等。

控制与预防

1、职业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。

2、日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。

3、由于煎炸食品是中国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展中国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法。

致癌说

油炸食物会致癌

2012年8月,美国《国家癌症研究杂志》报导,炸薯条等油炸淀粉类食物会产生一种称为丙烯酰胺的成分,可能会致癌。瑞典科学家也证实,炸薯条、炸洋芋片等高温油炸或烘烤的淀粉类食物,含有大量丙烯酰胺,会增加多种癌症发病的风险。

根据目前各国提供的数据,富含丙烯酰胺的食品主要有炸薯条、炸薯片爆玉米花、咖啡、饼干、面包、蛋糕、炸鸡等等。另外,世界卫生组织对17个国家的调查发现,人体摄入的丙烯酰胺主要来源的食品为炸薯条16%~30%,炸薯片6%~46%,咖啡13%~39%,饼干10%~20%,面包10%~30%,其余均小于10%。

热锅滚油炒蔬菜会致癌

2013年8月,香港食物安全中心发布的一份研究报告称,在对肉类、蔬菜、豆类及麦制品等共133种食物进行检测后发现,样本中47%的食物含有可能令人致癌的丙烯酰胺,其中让人大跌眼镜的是蔬菜及其制品的丙烯酰胺含量排第二位,仅次于零食类食品。该中心又对22种蔬菜样本进行测试,发现炒菜时间越长、温度越高,蔬菜释放出的丙烯酰胺就越多,加入食用油炒和干炒的检测结果无异。

在送检的蔬菜中,西葫芦高温加热后释放出的丙烯酰胺最多,其次为大蒜、洋葱,紧随其后的是空心菜灯笼椒、茄子、芥蓝、丝瓜、西芹、芥菜,而生菜、菠菜、苋菜在炒制后释放出的丙烯酰胺较少。

储运特性

储存注意事项

储存于阴凉、通风的库房。远离火种、热源。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类、食用化学品分开存放,切忌混储。不宜大量储存或久存。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。

运输注意事项

铁路运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。运输前应先检查包装容器是否完整、密封,运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与酸类、氧化剂、食品及食品添加剂混运。运输途中应防曝晒、雨淋,防高温。


Powered by prower