抗张强度

更新时间:2022-06-25

抗张强度(tensile strength),即抗拉强度。又称拉伸强度,扯断强度。表示单位面积的破碎力。符号σt。材料或构件受拉力时抵抗破坏的能力。可用强度极限来表示。是金属和非金属材料的机械性能的一项指标。单位为牛/平方厘米(N/m㎡)或帕斯卡(Pa),纸张往往作纵向测定或横向测定,分别称做纵向抗张力或横向抗张力,国际标准以kN/㎡表示。对皮革抗张强度=革样断裂时的负荷(N/革样的横切面积m㎡)。各种皮革都被规定有应达到的抗张强度指标,如铬鞣黄牛皮鞋面革的抗张强度为≥20N/m㎡。

基本信息

单位帕斯卡
应用金属、塑料、木材等材料测试
别称抗拉强度
中文名抗张强度
符号σt
外文名tensile strength;breakdown strength

定义

抗张强度使得测试片由原始横截面开始断裂的最大负荷。最初以t/in标记。现在以N/mm作为单位计量。也称为了最大的应力和最大抗拉应力

造纸工业中抗张强度的定义是纸张承受的最大作用力除以纸样宽度。在大多数其它材料(金属、塑料、木材等)的测试中,抗张强度是指式样被拉伸断裂时承受最大载荷与试样横断面积的比值。

分类

木材承受拉伸荷载的能力。木材抗拉强度分为顺纹抗拉与横纹抗拉两种。

顺纹抗拉强度抵抗沿纹理方向的拉伸荷载能力。无疵木材的强度性质中,以顺纹抗拉强度最高,通常约为顺纹抗压强度的2~3倍,抗弯强度的1.5倍。木材顺纹抗拉强度,主要取决于组成针叶树材管胞胞壁或阔叶树材中纤维细胞胞壁中的纤维素含量。因为纤维素链状分子,与细胞的轴向是一致的,当木材顺纹承受拉力荷载时,所有的链状分子都起作用。顺纹抗拉强度在通常的使用条件下是不能充分发挥和利用的,因为在构件联结处,由于顺纹剪切强度太小,只有顺纹抗拉强度的6~10%,往往在联结固定处发生剪切或劈裂的破坏。木节、斜纹或任何不规律的林木生长缺陷都对顺纹抗拉强度有较大不良的影响。通常密度高的木材,其顺纹抗拉强度也高,当木材含水率低于纤维饱和点时,随木材含水率的降低顺纹抗拉强度增高,但影响的程度小于水分对木材的其他强度。要精确测定无疵木材的顺纹抗拉强度是较困难的,主要由于木材横纹抗压和顺纹抗剪强度都远低于顺纹抗拉强度。以致试验时的试样,往往因联接处受剪切力或压缩力的破坏,得不到最大的顺纹抗拉强度。各国的标准试验方法,主要考虑的是试样的形状、尺寸和夹具形式,尽量使之减少上述影响的应力因素,有的国家材料试验中尚未列入此项试验。有的虽有此项方法,但一般不要求进行,在设计、利用需要顺纹抗拉强度指标时,则利用抗弯强度相等的值代替。

横纹抗拉强度承受垂直于木材纹理方向的拉伸荷载的能力。木材横纹抗拉强度很低,如果木材因干缩而产生裂纹时,横纹抗拉强度会受到很大的削弱,甚至会完全丧失。因此在任何木结构的构件中,应尽量避免产生横纹抗拉应力。当木材纹理方向与其构件的主轴成一定角度时,将导致顺纹抗拉趋向横纹抗拉,使木材主轴方向的抗拉强度明显地降低。横纹抗拉强度,也可用于推测木材干燥时是否容易发生开裂现象,木材横纹抗拉强度仅为顺纹抗拉强度的1/10~1/40。木材弦向与径向的横纹抗拉强度也不完全相同,一般径向比弦向高,因为木材径向受拉时受木射线的加强作用,具有宽射线的木材其作用更为明显。射线虽不宽而早晚材明显的针叶树材,抗拉强度弦向可能大于径向

基本内容

tensile strength

即抗拉强度。又称拉伸强度,扯断强度。符号σb。材料或构件受拉力时抵抗破坏的能力。可用强度极限来表示。是金属和非金属材料的机械性能的一项指标。单位为牛/厘米2(N/cm2)或帕斯卡(Pa),纸张往往作纵向测定或横向测定,分别称做纵向抗张力或横向抗张力,国际标准以kN/m表示。对皮革抗张强度=革样断裂时的负荷(N/革样的横切面积mm2)。各种皮革都被规定有应达到的抗张强度指标,如铬鞣黄牛皮正鞋面革的抗张强度为≥20N/mm2。

使得测试片由原始横截面开始断裂的最大负荷。最初以tons/sq.in标记。现在以Newtons/sq.mm作单位计量。

计算

按式(1)计算抗张强度(S),取三位有效数字

式中:S——抗张强度,kN/m;

F——平均抗张力,N;

Lw——试样的横截面积,mm。

注:低定量纸,如薄页纸用N/m表示为宜。

物体形变

当应力达到抗拉强度以前,整个试件变形是均匀的。但是应力达到抗拉强度时,试件变形就集中在某一薄弱区域内,这部分截面发生显著的收缩(颈缩)。颈缩部分的截面比原截面小得多,因而颈缩截面上的实际应力比按原截面计算的应力大得多。但是,以原截面计算的试件应力达到抗拉强度后,试件就必然断裂,因而断裂强度σf实际工程上意义不大。在工程上常以抗拉强度代表材料的断裂应力

对塑性材料,试样在最大载荷以前为均匀塑性变形,各部分的伸长量基本相同;在最大载荷后变形集中在试样的某一部分,并在该处出现“缩颈”。故抗拉强度的物理意义是表征材料对最大均匀变形的抗力。抗拉强度是材料的重要力学性能指标,是构件或零件设计和选材重要依据之一。抗拉强度通过拉伸试验测定,并与其他力学性能指标存在一定的内在联系。

影响因素

抗张强度是将长方形高聚物样品夹于拉力机上以均匀速度拉伸至样品断裂时所需的应力。其值和断裂前的形变受到多种因素的影响。如在高聚物玻璃化温度以下很多度,形变很小时,应 力即迅速上升,引起脆性断裂;温度稍微升高时,分子链段在大应力作用下,微有移动,断裂时主要仍是脆性的,但略带韧性;当温度接近玻璃化温度,链段在应力不太大时,能移动,产生强迫高弹形变。此时无定形高聚物链段有取向,有时可能部分结晶,在样品中部出现细颈,断裂时表现为坚韧的,如在高弹态,则在应力不大时,便能产生高弹形变,故断裂时表现为软韧的。此外,增加拉伸的速度将增加断裂强度值。其他如交链和结晶区的存在,亦将影响断裂强度。

试验

岩石抗拉强度是岩石物理力学性质之一。指岩石试件在拉应力作用下破坏时,与拉力垂直的断面上的平均拉应力。由于试件制作和实现单轴拉伸加载的困难,很少采用直接拉伸试验,大多采用劈裂法间接拉伸试验测定岩石抗拉强度,由于岩石中微裂隙在压力下闭合而产生摩擦,用劈裂法测定的抗拉强度略高于直接拉伸试验测定值。

一般所说的岩石抗拉伸强度都是指简单应力状态下(即单轴抗拉伸状态)的强度。为了确定岩石的抗拉伸强度,有直接拉伸和间接拉伸两类试验方法。直接拉伸试验基本上与一般的金属拉伸试验方法相同,将岩样加工成与金属拉伸试棒类似的形状,然后夹紧在材料试验机夹头上进行拉伸,当岩石拉断时,单位截面积上的极限载荷即为该岩石的抗拉伸强度。间接拉伸试验有盘形试样的巴西劈裂试验、筒形试样的抗内压胀裂试验等多种。在进行直接拉伸试验时,必须将岩样加工成形状复杂的试棒,这对于岩石材料来说是十分困难的。因此,许多研究者都设法使用具有规则形状的圆柱形岩样,并且采用特殊的夹头,即不用机械夹紧的办法,而采用各种粘结的办法 (例如使用铅的化合物、含硫粘剂及环氧树脂等)使岩样两端与拉伸夹头粘牢,并把夹头的结构设计为自行找中,以避免弯距的产生(包括使用球接头,并通过柔性钢丝绳加载等),除了抗拉伸强度很高的岩石之外,一般都能获得较好的效果。

直接测定岩石试件单轴抗拉强度的试验。试验在万能试验机上进行。试件为高径比2.5~3.0、直径不小于54mm的圆柱体。试验时试件两端粘结在备有适当联接装置的圆筒状金属套帽中,以保证荷载通过试件的轴线。加载速度应保持恒定,使破坏发生在5分钟内。每组岩样的试件不得少于5 个。试件的抗拉强度,以作用在试件上的最大荷载 (N) 除以试件的初始横截面积 (mm) 得到。


Powered by prower